COURSE OUTCOME 2024-25 DEPARTMENT OF MATHEMATICS

B.Sc.(Hons.) Mathematics

Sem	Type of Course	Course Name	Course Outcomes
Ι	Core	DSC-1: Algebra	 CO1: Determine number of positive/negative real roots of a real polynomial. CO2: Solve cubic and quartic polynomial equations with special condition on roots and in general. CO3: Employ De-Moivre's theorem in a number of applications to solve numerical problems. CO4: Use modular arithmetic and basic properties of congruences. CO5: Recognize the algebraic structure, namely groups, and classify subgroups of cyclic groups.
Ι	Core	DSC-2: Elementary Real Analysis	CO1: Understand the fundamental properties of the real numbers, including completeness and Archimedean, and density property of rational numbers in \mathbb{R} . CO2: Learn to define sequences in terms of functions from N to a subset of \mathbb{R} and find the limit. CO3: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate the limit superior and limit inferior of a bounded sequence. CO4:Apply limit comparison, ratio, root, and alternating series tests for convergence and absolute convergence of infinite series of real numbers.
Ι	Core	DSC-3: Probability and Statistics	 CO1: Understand some basic concepts and terminology population, sample, descriptive and inferential statistics including stem-and-leaf plots, dotplots, histograms and boxplots. CO2: Learn about probability density functions and various univariate distributions such as binomial, hypergeometric, negative binomial, Poisson, normal, exponential and lognormal. CO3: Understand the remarkable fact that the empirical frequencies of so many natural populations, exhibit bell-shaped (i.e., normal) curves, using the Central Limit Theorem. CO4: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.

т	SEC	SEC-1:	CO1. After studying this serves studying this serves
I	SEC	E-Tourism	CO1: After studying this course, students will be able to gain insight into concept of e tourism, travel intermediaries and travel websites. CO2: After studying this course, students will be able to learn and explain the emerging ICT tools and its impact in the industry. CO3: After studying this course, students will be able to understand and implement the use of social media platforms/artificial intelligence in e-tourism.
Ι	SEC	SEC-1: IT Skills and Data Analysis - I	 CO1: Represent and interpret data in tabular and graphical forms CO2: Understand and interpret the measures of central tendency and dispersion. CO3: Use IT tools such as spreadsheets to visualize and analyze data.
Ι	SEC	SEC-1: Programming using Python	CO1: After studying this course, students will be able to interpret the basic representation of the data structures and sequential programming CO2: After studying this course, students will be able to gain knowledge of, and ability to use control framework terminologies. CO3: After studying this course, students will be able to work out using the core data structures as lists, dictionaries, tuples, and sets. CO4: After studying this course, students will be able to choose appropriate programming paradigms, interrupt and handle data using files to propose solutions through reusable modules CO5: After studying this course, students will be able to propose possible error-handling constructs for unanticipated states/inputs. CO6: After studying this course, students will be able to implements exemplary applications on real-world problems.
I	VAC	VAC-1: Vedic Mathematics-1	CO1: Overcome the fear of maths CO2: Improved critical thinking CO3: Familiarity with the mathematical underpinnings and techniques CO4: Ability to do basic maths faster and with ease. CO5: Appreciate the Mathematical advancements of Ancient India.
Π	Core	DSC-4 Linear Algebra	 CO1: Visualize the space <i>RRnn</i> in terms of vectors and their interrelation with matrices. CO2: Familiarize with basic concepts in vector spaces, linear independence and span of vectors over a field. CO3: Learn about the concept of basis and dimension of a vector space. CO4: Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation with application to computer graphics.

II	Core	DSC-5:	CO1: The notion of limits, continuity and uniform
11	Cole		continuity of functions.
		Calculus	CO2: Geometrical properties of continuous functions on
			closed and bounded intervals.
			CO3: Applications of derivative, relative extrema and
			mean value theorems.
			CO4: Higher order derivatives, Taylor's theorem,
			indeterminate forms and tracing of curves.
II	Core	DSC-6:	CO1: Learn the basics of differential equations and
		Ordinary	compartmental models.
		Differential	CO2: Formulate differential equations for various
		Equations	mathematical models.
			CO3: Solve first order non-linear differential equations,
			linear differential equations of higher order and system
			of linear differential equations using various techniques.
			CO4: Apply these techniques to solve and analyze
			various mathematical models.
II	SEC	SEC-1: IT Skills	CO1: Represent and interpret data in tabular and
		and Data Analysis	
		- I	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
	~ ~ ~ ~		analyze data.
II	SEC	SEC-1: IT Skills	CO1: Establish relationships between variables using
			correlation and regression analysis.
		- II	CO2: Visualize functions and differentiate between
			linear and nonlinear functions.
			CO3: Use IT tools such as spreadsheets to visualize and analyze data.
II	SEC	SEC 1: E Tourism	CO1: After studying this course, students will be able to
11	BLC	SEC-1. E-Tourisin	gain insight into concept of e tourism, travel
			intermediaries and travel websites.
			CO2: After studying this course, students will be able to
			learn and explain the emerging ICT tools and its impact
			in the industry.
			CO3: After studying this course, students will be able to
			understand and implement the use of social media
			platforms/artificial intelligence in e-tourism.
II	VAC	VAC-1: Vedic	CO1: Overcome the fear of maths
		Mathematics-1	CO2: Improved critical thinking
			CO3: Familiarity with the mathematical underpinnings
			and techniques
			CO4: Ability to do basic maths faster and with ease.
			CO5: Appreciate the Mathematical advancements of
TT	VAC		Ancient India.
II	VAC	VAC-1: Vedic	CO1: Think critically
		Mathematics-2	CO2: Find mathematical solution of algebraic
			expressions
			CO3: Solve system of linear equations and matrices faster and with ease.
			CO4: Appreciate the Mathematical advancements of
			Ancient India.
	L		1 111/10/11/ 111/11/4.

III	Core	DSC-7: Group Theory	 CO1: Analyse the structure of 'small' finite groups, and examine examples arising as groups of permutations of a set, symmetries of regular polygons. CO2: Understand the significance of the notion of cosets, Lagrange's theorem and its consequences. CO3: Know about group homomorphisms and isomorphisms and to relate groups using these mappings. CO4: Express a finite abelian group as the direct product of cyclic groups of prime power orders. CO5: Learn about external direct products and its applications to data security and electric circuits.
III	Core	DCS-8: Riemann Integration	 CO1: Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Riemann sums to the volume and surface of a solid of revolution. CO2: Get insight of integration by substitution and integration by parts. CO3: Know about convergence of improper integrals including, beta and gamma functions.
III	Core	DSC-9: Discrete Mathematics	 CO1: Understand the notion of partially ordered set, lattice, Boolean algebra with applications. CO2: Handle the practical aspect of minimization of switching circuits to a great extent with the methods discussed in this course. CO3: Apply the knowledge of Boolean algebras to logic, set theory and probability theory.
III	DSE	Graph Theory	 CO1: Learn modelling of real-world problems by graphs. CO2: Know characteristics of different classes of graphs. CO3: Learn representation of graphs in terms of matrices. CO4: Learn algorithms to optimize a solution. CO5: Understand some properties of graphs and their applications in different practical situations.
III	DSE	Number Theory	 CO1: Use modular arithmetic in solving linear and system of linear congruence equations. CO2: Work with the number theoretic functions, their properties and their use. CO3: Learn the forms of positive integers that possess primitive roots and the Quadratic Reciprocity Law which deals with the solvability of quadratic congruences.

			CO4: Understand the public-key cryptosystems, in
			particular, RSA.
III	SEC	SEC-1: Statistics	CO1: After studying this course, students will be able to
		with R	extract and Read data into R, manipulate, and analyse it.
			CO2: After studying this course, students will be able
			to debug, organize, and comment R code.
			CO3: After studying this course, students will be able
			to understand the R environment for downloading,
			installing, and using packages
			CO4: After studying this course, students will be able
			to do basic programming to write own functions
			CO5: After studying this course, students will be able
			to use loops
			CO6: After studying this course, students will be able
			to create standard and customized graphics
			CO7: After studying this course, students will be able
III	SEC	SEC 1. IT Shills	to perform basic statistical operations and regression.
III	SEC	SEC-1: IT Skills	CO1: To establish relationships between variables using correlation and regression analysis.
		- II	CO2: To visualize functions and differentiate between
		11	linear and nonlinear functions.
			CO3: To learn how to use IT tools such as spreadsheets
			to visualise and analyse data.
III	SEC	SEC-1: E-Tourism	CO1: After studying this course, students will be able to
			gain insight into concept of e tourism, travel
			intermediaries and travel websites.
			CO2: After studying this course, students will be able to
			learn and explain the emerging ICT tools and its impact
			in the industry.
			CO3: After studying this course, students will be able to
			understand and implement the use of social media platforms/artificial intelligence in e-tourism.
III	VAC	VAC-1: Vedic	CO1: Overcome the fear of maths
111	VAC	Mathematics-1	CO2: Improved critical thinking
		iviationiatios i	CO3: Familiarity with the mathematical underpinnings
			and techniques
			CO4: Ability to do basic maths faster and with ease.
			CO5: Appreciate the Mathematical advancements of
			Ancient India.
III	VAC	VAC-1: Vedic	CO1: Think critically
		Mathematics-2	CO2: Find mathematical solution of algebraic
			expressions
			CO3: Solve system of linear equations and matrices faster and with ease.
			CO4: Appreciate the Mathematical advancements of
			Ancient India.
IV	Core	DSC-10:	CO1: Learn about Cauchy criterion for uniform
		Sequences	convergence and Weierstrass <i>M</i> -test for uniform
		and Series of	convergence of series of real-valued functions.
		Functions	CO2: Know about the constraints for the inter
			changeability of differentiation, and integration with
			infinite sum of a series of functions.

CO3: Handle the convergence of power series and properties of the limit function, including differentiation
and integration of power series.
CO4: Appreciate utility of polynomials in the space of
continuous functions.

IV	Core	DSC-11: Multivariate Calculus	 CO1: Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion. CO: Understand the maximization and minimization of multivariable functions subject to the given constraints on variables. CO3: Learn about inter-relationship amongst the line integral, double, and triple integral formulations. CO4: Familiarize with Green's, Stokes' and Gauss divergence theorems, and learn applications.
IV	Core	DSC-12: Numerical Analysis	 CO1: Learn some numerical methods to find the zeroes of nonlinear functions of a single variable, up to a certain given level of precision. CO2: Learn Gauss–Jacobi, Gauss–Seidel methods to solve system of linear equations. CO3: Get aware of using interpolation techniques, for example in finding values of a tabulated function at points which are not part of the table. CO4 Learn finding numerical solutions of difference equations which are obtained converting differential equations using techniques from calculus.
IV	DSE	Mathematical Modeling	 CO1: Understand the methodology of solving SIR models for disease spread. CO2: Learn significance of dieting model that provides important insights and guides to a biomedical issue that is of interest to the general public. CO3: Understand nonlinear systems and phenomena with stability analysis ranges from phase plane analysis to ecological and mechanical systems. CO4: Use Monte Carlo simulation technique to approximate area under a given curve, and volume under a given surface.
IV	DSE	Bio-Mathematics	CO1: To learn and appreciate study of long-term behavior arising naturally in study of mathematical models and their impact on society at large. CO2: To understand spread of epidemic technically through various models and impact of recurrence phenomena. CO3: Learn what properties like Chaos and bifurcation means through various examples and their impact in Bio-Sciences.

TTT	ana		
IV	SEC		CO1: Represent and interpret data in tabular and
		and Data Analysis	
		- I	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
			analyze data.
IV	SEC		CO1: Create a text document using LaTeX using a
		Preparation &	standard template.
		Presentation	CO2: Incorporate well-formatted mathematical
		Software	equations, algorithms, figures, tables and references in a document.
			CO3: Use Zotero for reference management.
			CO4: Format text, including alignment, emphasis and
			fonts.
			CO5: Handle basic aspects of document structure,
			including sections, subsections, paragraphs, and bulleted
			and enumerated lists.
			CO6: Page set a document including header, footer, and
			page numbering. Make a presentation.
IV	SEC	SEC-1: E-Tourism	CO1: After studying this course, students will be able to gain insight into concept of e tourism, travel
			intermediaries and travel websites.
			CO2: After studying this course, students will be able to
			learn and explain the emerging ICT tools and its impact
			in the industry.
			CO3: After studying this course, students will be able to
			understand and implement the use of social media
			platforms/artificial intelligence in e-tourism.
IV	VAC	VAC-1: Digital	CO1: Use ICT and digital services in daily life.
		Empowerment	CO2: Develop skills to communicate and collaborate in
			cyberspace using social platforms, teaching/learning
			tools.
			CO3: Understand the significance of security and
			privacy in the digital world.
			CO4: Evaluate ethical issues in the cyber world.

V	Core	DSC 13:	CO1: Learn various natural and abstract formulations
		Metric Spaces	of distance on the sets of usual or unusual entities.
			Become aware one such formulations leading to metric
			spaces.
			CO2: Analyse how a theory advances from a particular
			frame to a general frame.
			CO3: Appreciate the mathematical understanding of
			various geometrical concepts, viz. balls or connected
			sets etc. in an abstract setting.
			CO4: Know about Banach fixed point theorem, whose
			far-reaching consequences have resulted into an
			independent branch of study in analysis, known as
			fixed point theory.
			CO5: Learn about the two important topological
			properties, namely connectedness and compactness of

			metric spaces.
V	Core	DSC 14: Ring Theory	CO1: Learn about the fundamental concept of rings, integral domains, and fields. CO2: Know about ring homomorphisms and isomorphisms theorems of rings, and construct quotient fields for integral domains. CO3: Appreciate the significance of unique factorization in rings and integral domains. CO4: Apply several criteria for determining when polynomials with integer coefficients have rational roots or are irreducible over the field of rational numbers.
V	Core	DSC 15: Partial Differential Equations	CO1: The method of characteristics and reduction to canonical forms to solve first and second order linear/nonlinear partial differential equations. CO2: The macroscopic modeling of the traffic flow, where the focus will be on modeling the density of cars and their flow, rather than modeling individual cars and their velocity. CO3: The Cauchy problem and solutions of wave equations with initial boundary-value problems, and non-homogeneous boundary conditions.
V	DSE	DSE 3(i): Mathematical Data Science	 CO1: Gain a comprehensive understanding of data science, its mathematical foundations including practical applications of regression, principal component analysis, singular value decomposition, clustering, support vector machines, and k-NN classifiers. CO2: Demonstrate data analysis and exploration, linear regression techniques such as simple, multiple explanatory variables, cross-validation and regularization using R/Python. CO3: Use real-world datasets to practice dimensionality reduction techniques such as PCA, SVD, and multidimensional scaling using R/Python.
V	DSE	DSE 3(ii): Linear Programming and Applications	 CO1: Learn about the basic feasible solutions of linear programming problems. CO2: Understand the theory of the simplex method to solve linear programming problems. CO3: Learn about the relationships between the primal and dual problems. CO4: Solve transportation and assignment problems. CO5: Understand two-person zero sum game, games with mixed strategies and formulation of game to primal and dual linear programing problems to solve using duality.

V	SEC	SEC-1: E-Tourism	CO1: After studying this course, students will be able to gain insight into concept of e tourism, travel intermediaries and travel websites. CO2: After studying this course, students will be able to learn and explain the emerging ICT tools and its impact in the industry. CO3: After studying this course, students will be able to understand and implement the use of social media platforms/artificial intelligence in e-tourism.
V	SEC	SEC-1: IT Skills and Data Analysis - I	CO1: Represent and interpret data in tabular and graphical forms CO2: Understand and interpret the measures of central tendency and dispersion. CO3: Use IT tools such as spreadsheets to visualize and analyze data.
VI	Core	DSC 16: Advanced Group Theory	CO1: Understand the concept of group actions and their applications.CO2: Understand finite groups using Sylow's theorem.CO3: Use Sylow's theorem to determine whether a group is simple or not.CO4: Understand and determine if a group is solvable or not.
VI	Core	DSC 17: Advanced Linear Algebra	 CO1: Understand the notion of an inner product space in a general setting and how the notion of inner products can be used to define orthogonal vectors, including to the Gram-Schmidt process to generate an orthonormal set of vectors. CO2: Use eigenvectors and eigenspaces to determine the diagonalizability of a linear operator. CO3: Find the Jordan canonical form of matrices when they are not diagonalizable. CO4: Learn about normal, self-adjoint, and unitary operators and their properties, including the spectral decomposition of a linear operator. CO5: Find the singular value decomposition of a matrix.

VI	Core	Complex Analysis	 CO1: Learn the significance of differentiability of complex functions leading to the understanding of Cauchy–Riemann equations. CO2: Learn some elementary functions and valuate the contour integrals. CO3: Understand the role of Cauchy–Goursat theorem and the Cauchy integral formula. CO4: Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues and apply Cauchy Residue theorem to evaluate integrals.
----	------	---------------------	--

VI	DSE	DSE 4(i): Mathematical Finance	CO1: Know the basics of financial markets and derivatives including options and futures. CO2: Learn about pricing and hedging of options. CO3: Learn the Itô's formula and the Black–Scholes model. CO4: Understand the concepts of trading strategies.
VI	DSE	DSE 4(ii): Integral Transforms	CO1: Understand the Fourier series associated with a periodic function, its convergence, and the Gibbs phenomenon. CO2: Compute Fourier and Laplace transforms of classes of functions. CO3: Apply techniques of Fourier and Laplace transforms to solve ordinary and partial differential equations and initial and boundary value problems.
VI	DSE	DSE 4(iii): Research Methodology	 CO1: Develop researchable questions and to make them inquisitive enough to search and verify new mathematical facts. CO2: Understand the methods in research and carry out independent study in areas of mathematics. CO3: Write a basic mathematical article and a research project. CO4: Gain knowledge about publication of research articles in good journals. CO5: Communicate mathematical ideas both in oral and written forms effectively.

VI	SEC	SEC-1: E-Tourism	 CO1: After studying this course, students will be able to gain insight into concept of e tourism, travel intermediaries and travel websites. CO2: After studying this course, students will be able to learn and explain the emerging ICT tools and its impact in the industry. CO3: After studying this course, students will be able to understand and implement the use of social media platforms/artificial intelligence in e-tourism.
VI	SEC	SEC-1: IT Skills and Data Analysis - II	 CO1: To establish relationships between variables using correlation and regression analysis. CO2: To visualize functions and differentiate between linear and nonlinear functions. CO3: To learn how to use IT tools such as spreadsheets to visualise and analyse data.
VI	SEC	Document Preparation & Presentation Software	 CO1: Create a text document using LaTeX using a standard template. CO2: Incorporate well-formatted mathematical equations, algorithms, figures, tables and references in a document. CO3: Use Zotero for reference management. CO4: Format text, including alignment, emphasis and fonts. CO5: Handle basic aspects of document structure, including sections, subsections, paragraphs, and bulleted and enumerated lists. CO6: Page set a document including header, footer, and page numbering. Make a presentation.

GENERIC ELECTIVE (GE) Courses for Honours Courses (For students other than B.Sc. (Hons.) Mathematics)

Sem	Type of Course	Course Name	Course Outcomes
Ι	GE	GE-1: Fundamentals of Calculus	 CO1: Understand continuity and differentiability in terms of limits. CO2: Describe asymptotic behavior in terms of limits involving infinity. CO3: Understand the importance of mean value theorems and its applications. CO4: Learn about Maclaurin's series expansion of elementary functions. CO5: Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the polynomial and rational functions.
II	GE	GE-2: Introduction to Linear Algebra	CO1: Visualize the space R^n in terms of vectors and the interrelation of vectors with matrices. CO2: Understand important uses of eigenvalues and eigenvectors in the diagonalization of matrices.

CO3: Familiarize with concepts of bases, dimension and minimal spanning sets in vector
spaces. CO4: Learn about linear transformation and its corresponding matrix.

III	GE	GE-3: Differential Equations	 CO1: Solve the exact, linear, Bernoulli equations, find orthogonal trajectories and solve rate problems. CO2: Apply the method of undetermined coefficients and variation of parameters to solve linear differential equations. CO3: Solve Cauchy-Euler equations and System of linear differential equations. CO4: Formulate and solve various types of first and second order partial differential equations.
IV	GE	GE-4: Elements of Real Analysis	CO1: Understand the basic properties of the set of real numbers, including completeness and Archimedean with some consequences. CO2: Recognize bounded, convergent, monotonic and Cauchy sequences CO3: Learn to apply various tests such as limit comparison, ratio, root, and alternating series tests for convergence and absolute convergence of infinite series of real numbers.
V	GE	GE-5: Numerical Methods	CO1: Find the consequences of finite precision and the inherent limits of numerical methods. CO2: Appropriate numerical methods to solve algebraic and transcendental equations. CO3: Solve first order initial value problems of ODE's numerically using Euler methods.
VI	GE	GE-6: Abstract Algebra	CO1: Appreciate ample types of groups present around us which explains our surrounding better, and classify them as abelian, cyclic and permutation groups. CO2: Explain the significance of the notion of cosets, normal subgroups and homomorphisms. CO3: Understand the fundamental concepts of rings, subrings, fields, ideals, and factor rings.

MATHEMATICS COURSES FOR B.A. (PROG.)

Sem	Туре	Course Name	Course Outcomes
	of		
	Course		

Ι	Core Major	DSC-1: Elements of Discrete Mathematics	 CO1: Understand the basic concepts of sets, relations, functions, and induction. CO2: Understand mathematical logic and logical operations to various fields. CO3: Understand the notion of order and maps between partially ordered sets. CO4: Minimize a Boolean polynomial and apply Boolean algebra techniques to decode switching circuits.
Ι	Core Minor	DSC-1 Topics in Calculus	 CO1: Understand continuity and differentiability in terms of limits and graphs of certain functions. CO2: Describe asymptotic behaviour in terms of limits involving infinity. CO3: Use of derivatives to explore the behaviour of a given function locating and classify its extrema and graphing the function. CO4: Apply the concepts of asymptotes, and inflexion points in tracing of cartesian curves. CO5: Compute the reduction formulae of standard transcendental functions with applications
II	Core Major	Analytic Geometry	CO1: Learn concepts in two-dimensional geometry. CO2: Identify and sketch conics namely, ellipse, parabola and hyperbola. CO3: Learn about three-dimensional objects such as straight lines and planes using vectors, spheres, cones and cylinders.
Π	Core Minor	Elementary Linear Algebra	CO1: To introduce the concept of vectors in \mathbb{R}^n . CO2: Understand the nature of solution of system of linear equations. CO3: To view the $m \times n$ matrices as a linear function from \mathbb{R}^n to \mathbb{R}^m and vice versa. CO4: To introduce the concepts of linear independence and dependence, rank and linear transformations has been explained through matrices. CO4: Get an overview of abstract algebra by learning about algebraic structures namely, groups, rings and vector spaces.

	Major	Theory of Equations and Symmetries	CO1: Understand the nature of the roots of polynomial equations and their symmetries.CO2: Solve cubic and quartic polynomial equations with special condition on roots and in general.CO3: Find symmetric functions in terms of the elementary symmetric polynomials.
--	-------	---	---

III	Core Minor	DSC-3: Differential Equations	 CO1: Solve the exact, linear, Bernoulli equations, find orthogonal trajectories and solve rate problems. CO2: Apply the method of undetermined coefficients and variation of parameters to solve linear differential equations. CO3: Solve Cauchy-Euler equations and System of linear differential equations. CO4: Formulate and solve various types of first and second order partial differential equations
IV	Core Major	Introduction to Graph Theory	 CO1: Good familiarity with all initial notions of graph theory and related results and seeing them used for some real-life problems. CO2: Learning notion of trees and their enormous usefulness in various problems. CO3: Learning various algorithms and their applicability. CO4: Studying planar graphs, Euler theorem associated to such graphs and some useful applications like coloring of graphs.
IV	Core Minor	Abstract Algebra	 CO1: Appreciate ample types of groups present around us which explains our surrounding better, and classify them as abelian, cyclic and permutation groups. CO2 Explain the significance of the notion of cosets, normal subgroups and homomorphisms. CO3: Understand the fundamental concepts of rings, subrings, fields, ideals, and factor rings.
V	Core Major	Linear Programming	 CO1: Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints. CO2: Write the dual of a linear programming problem. CO3: Solve the transportation and assignment problems. CO4: Learn about solution of rectangular games using graphical method and dominance. CO5: Formulate game to a pair of associated prima-dual linear programming problems.

V	Core Minor	Elements of Real Analysis	CO1: Understand the basic properties of the set of real numbers, including completeness and Archimedean with some consequences. CO2: Recognize bounded, convergent, monotonic and Cauchy sequences CO3: Learn to apply various tests such aslimit comparison, ratio, root, and alternating series tests for convergence and absolute convergence of infinite series of real numbers.
V	DSE	DSE 1(ii): Elements of Number Theory	CO1: Get familiar with the basic number-theoretic techniques. CO2: Comprehend some of the open problems in number theory. CO3: Learn the properties and use of number-theoretic functions and special types of numbers. CO4: Acquire knowledge about public-key cryptosystems, particularly RSA.

VI	Core Major	Elementary Mathematical Analysis	CO1: Apply sequential continuity criterion for the proof of intermediate value theorem.CO2: Understand the basic tool used to calculate integrals.CO3: Apply uniform convergence for term-by-term integration in power series expansion.
VI	Core Minor	Probability and Statistics	CO1: Understand some basic concepts and terminology-population, sample, descriptive and inferential statistics including stem-and-leaf plots, dotplots, histograms and boxplots. CO2: Learn about probability density functions and various univariate distributions such as binomial, hypergeometric, negative binomial, Poisson, normal, exponential, and lognormal. CO3: Understand the remarkable fact that the empirical frequencies of so many natural populations, exhibit bell-shaped (i.e., normal) curves, using the Central Limit Theorem. CO4: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.

VI		Research Methodology	 CO1: Develop researchable questions and to make them inquisitive enough to search and verify new mathematical facts. CO2: Understand the methods in research and carry out independent study in areas of mathematics. CO3: Write a basic mathematical article and a research project. CO4: Gain knowledge about publication of research articles in good journals. CO5: Communicate mathematical ideas both in oral and written forms effectively.
----	--	-------------------------	--