COURSE OUTCOME 2023-24 DEPARTMENT OF MATHEMATICS

B.Sc.(Hons.) Mathematics

Sem	Type	Course Name	Course Outcomes
	or Course		
Ι	Core	DSC-1: Algebra	 CO1: Determine number of positive/negative real roots of a real polynomial. CO2: Solve cubic and quartic polynomial equations with special condition on roots and in general. CO3: Employ De-Moivre's theorem in a number of applications to solve numerical problems. CO4: Use modular arithmetic and basic properties of congruences. CO5: Recognize the algebraic structure, namely groups, and classify subgroups of cyclic groups.
Ι	Core	DSC-2: Elementary Real Analysis	CO1: Understand the fundamental properties of the real numbers, including completeness and Archimedean, and density property of rational numbers in \mathbb{R} . CO2: Learn to define sequences in terms of functions from \mathbb{N} to a subset of \mathbb{R} and find the limit. CO3: Recognize bounded, convergent, divergent, Cauchy and monotonic sequences and to calculate the limit superior and limit inferior of a bounded sequence. CO4:Apply limit comparison, ratio, root, and alternating series tests for convergence and absolute convergence of infinite series of real numbers.
Ι	Core	DSC-3: Probability and Statistics	 CO1: Understand some basic concepts and terminology population, sample, descriptive and inferential statistics including stem-and-leaf plots, dotplots, histograms and boxplots. CO2: Learn about probability density functions and various univariate distributions such as binomial, hypergeometric, negative binomial, Poisson, normal, exponential and lognormal. CO3: Understand the remarkable fact that the empirical frequencies of so many natural populations, exhibit bell-shaped (i.e., normal) curves, using the Central Limit Theorem. CO4: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.

	~ - ~	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
1	SEC	SEC-1: Statistics	CO1: After studying this course, students will be able to
		with R	extract and Read data into R, manipulate, and analyse it.
			CO2: After studying this course, students will be able
			to debug, organize, and comment R code.
			CO3: After studying this course, students will be able
			to understand the R environment for downloading,
			installing, and using packages
			CO4: After studying this course, students will be able
			to do basic programming to write own functions
			CO5: After studying this course, students will be able
			to use loops
			CO6: After studying this course, students will be able
			to create standard and customized graphics
			CO7: After studying this course, students will be able
			to perform basic statistical operations and regression.
Ι	SEC	SEC-1: IT Skills	CO1: Represent and interpret data in tabular and
		and Data Analysis	graphical forms
		- I	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
т	0EC		analyze data.
1	SEC	SEC-1:	CO1: After studying this course, students will be able to
		Programming	interpret the basic representation of the data structures
		using Python	and sequential programming
			CO2: After studying this course, students will be able
			to gain knowledge of, and ability to use control
			framework terminologies.
			CO3: After studying this course, students will be able
			to work out using the core data structures as lists,
			dictionaries, tuples, and sets.
			CO4: After studying this course, students will be able
			to choose appropriate programming paradigms, interrupt
			and handle data using files to propose solutions through
			reusable modules
			CO5: After studying this course, students will be able
			to propose possible error-handling constructs for
			unanticipated states/inputs.
			CO6: After studying this course, students will be able
			to implements exemplary applications on real-world
т	TIAC		problems.
1	VAC	VAC-1: Vedic	CO1: Overcome the fear of maths
		Mathematics-1	CO2: Improved critical thinking
			CO3: Familiarity with the mathematical underpinnings
			and techniques
			CO4: Ability to do basic maths faster and with ease.
			CO5: Appreciate the Mathematical advancements of
			Ancient India.

Π	Core	DSC-4	CO1: Visualize the space <i>RRnn</i> in terms of vectors and
		Linear Algebra	their interrelation with matrices
			CO2· Familiarize with basic concepts in vector spaces
			linear independence and span of vectors over a field
			CO3: Learn about the concent of basis and dimension of
			a vector space
			a vector space.
			CO4: Basic concepts of finear transformations,
			dimension theorem, matrix representation of a linear
			transformation with application to computer graphics.
Π	Core	DSC-5:	CO1: The notion of limits, continuity and uniform
		Calculus	continuity of functions.
			CO2: Geometrical properties of continuous functions on
			closed and bounded intervals.
			CO3: Applications of derivative, relative extrema and
			mean value theorems
			CO4: Higher order derivatives. Taylor's theorem.
			indeterminate forms and tracing of curves
П	Core	DSC_{-6}	CO1: Learn the basics of differential equations and
11	Cole	Ordinary	compartmental models
		Differential	CO2. Economicat models.
		Equations	CO2. Formulate differential equations for various
		Equations	mamematical models.
			CO3: Solve first order non-linear differential equations,
			linear differential equations of higher order and system
			of linear differential equations using various techniques.
			CO4: Apply these techniques to solve and analyze
	~~~~		various mathematical models.
Ш	SEC	SEC-1: IT Skills	CO1: Represent and interpret data in tabular and
		and Data Analysis	graphical forms
		- 1	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
TT	ara		analyze data.
11	SEC	SEC-1: IT Skills	CO1: Establish relationships between variables using
		and Data Analysis	correlation and regression analysis.
		- 11	CO2: Visualize functions and differentiate between
			linear and nonlinear functions.
			CO3: Use II tools such as spreadsheets to visualize
II	0EC		
11	SEC	SEC-I:	CO1: After studying this course, students will be able to
		Programming	interpret the basic representation of the data structures
		using Python	and sequential programming
			CO2: After studying this course, students will be able
			to gain knowledge of, and ability to use control
			framework terminologies.
			CO3: After studying this course, students will be able
			to work out using the core data structures as lists,
			dictionaries, tuples, and sets.
			CO4: After studying this course, students will be able
			to choose appropriate programming paradigms, interrupt
			and handle data using files to propose solutions through
			reusable modules

			<ul> <li>CO5: After studying this course, students will be able to propose possible error-handling constructs for unanticipated states/inputs.</li> <li>CO6: After studying this course, students will be able to implements exemplary applications on real-world problems.</li> </ul>
П	VAC	VAC-1: Vedic Mathematics-1	<ul><li>CO1: Overcome the fear of maths</li><li>CO2: Improved critical thinking</li><li>CO3: Familiarity with the mathematical underpinnings and techniques</li><li>CO4: Ability to do basic maths faster and with ease.</li><li>CO5: Appreciate the Mathematical advancements of Ancient India.</li></ul>
П	VAC	VAC-1: Vedic Mathematics-2	<ul> <li>CO1: Think critically</li> <li>CO2: Find mathematical solution of algebraic</li> <li>expressions</li> <li>CO3: Solve system of linear equations and matrices</li> <li>faster and with ease.</li> <li>CO4: Appreciate the Mathematical advancements of</li> <li>Ancient India.</li> </ul>
Ш	Core	DSC-7: Group Theory	<ul> <li>CO1: Analyse the structure of 'small' finite groups, and examine examples arising as groups of permutations of a set, symmetries of regular polygons.</li> <li>CO2: Understand the significance of the notion of cosets, Lagrange's theorem and its consequences.</li> <li>CO3: Know about group homomorphisms and isomorphisms and to relate groups using these mappings.</li> <li>CO4: Express a finite abelian group as the direct product of cyclic groups of prime power orders.</li> <li>CO5: Learn about external direct products and its applications to data security and electric circuits.</li> </ul>
Ш	Core	DCS-8: Riemann Integration	CO1: Learn about some of the classes and properties of Riemann integrable functions, and the applications of the Riemann sums to the volume and surface of a solid of revolution. CO2: Get insight of integration by substitution and integration by parts. CO3: Know about convergence of improper integrals including, beta and gamma functions.
Ш	Core	DSC-9: Discrete Mathematics	CO1: Understand the notion of partially ordered set, lattice, Boolean algebra with applications. CO2: Handle the practical aspect of minimization of switching circuits to a great extent with the methods discussed in this course. CO3: Apply the knowledge of Boolean algebras to logic, set theory and probability theory.

Ш	DSE	DSE 1(ii)	CO1: For numerical and symbolic computation in
	222	Mathematical	mathematical problems from calculus algebra and
		Python	geometry
		i yuloli	CO2: To tabulate and plot diverse graphs of functions
			CO2. To tabulate and plot diverse graphs of functions
			and understand tracing of snapes, geometries, and
			fractals.
			CO3: To prepare smart documents with LaTeX
			interface.
III	DSE	DSE 1(iii)	CO1: Use modular arithmetic in solving linear and
		Number	system of linear congruence equations.
		Theory	CO2: Work with the number theoretic functions, their
			properties and their use.
			CO3: Learn the forms of positive integers that possess
			primitive roots and the Quadratic Reciprocity Law
			which deals with the solvability of quadratic
			congruences
			CO4: Understand the public-key cryptosystems in
			narticular RSA
ш	SEC	SEC-1. Statistics	CO1: After studying this course students will be able to
	SLC	with R	extract and Read data into R manipulate and analyse it
			CO2: After studying this course, students will be able
			to debug, organiza, and comment P code
			$CO_{2}$ . A frag studying this source, students will be able
			COS. After studying tins course, students will be able
			io understand the K environment for downloading,
			instailing, and using packages
			CO4: After studying this course, students will be able
			to do basic programming to write own functions
			CO5: After studying this course, students will be able
			to use loops
			CO6: After studying this course, students will be able
			to create standard and customized graphics
			CO7: After studying this course, students will be able
			to perform basic statistical operations and regression.
Ш	SEC	SEC-1: IT Skills	CO1: Represent and interpret data in tabular and
		and Data Analysis	graphical forms
		- I	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
			analyze data.
III	SEC	SEC-1:	CO1: After studying this course, students will be able to
		Programming	interpret the basic representation of the data structures
		using Python	and sequential programming
			CO2: After studying this course, students will be able
			to gain knowledge of, and ability to use control
			framework terminologies.
			CO3: After studying this course, students will be able
			to work out using the core data structures as lists,
			dictionaries, tuples, and sets.
			CO4: After studying this course, students will be able
			to choose appropriate programming paradigms. interrupt
			and handle data using files to propose solutions through
			reusable modules
			CO5: After studying this course, students will be able
			to propose possible error-handling constructs for

			unanticipated states/inputs. CO6: After studying this course, students will be able to implements exemplary applications on real-world problems.
Ш	VAC	VAC-1: Vedic Mathematics-1	<ul> <li>CO1: Overcome the fear of maths</li> <li>CO2: Improved critical thinking</li> <li>CO3: Familiarity with the mathematical underpinnings and techniques</li> <li>CO4: Ability to do basic maths faster and with ease.</li> <li>CO5: Appreciate the Mathematical advancements of Ancient India.</li> </ul>
Ш	VAC	VAC-1: Vedic Mathematics-2	CO1: Think critically CO2: Find mathematical solution of algebraic expressions CO3: Solve system of linear equations and matrices faster and with ease. CO4: Appreciate the Mathematical advancements of Ancient India.
IV	Core	DSC-10: Sequences and Series of Functions	<ul> <li>CO1: Learn about Cauchy criterion for uniform convergence and Weierstrass <i>M</i>-test for uniform convergence of series of real-valued functions.</li> <li>CO2: Know about the constraints for the inter changeability of differentiation, and integration with infinite sum of a series of functions.</li> <li>CO3: Handle the convergence of power series and properties of the limit function, including differentiation and integration of power series.</li> <li>CO4: Appreciate utility of polynomials in the space of continuous functions.</li> </ul>
IV	Core	DSC-11: Multivariate Calculus	<ul> <li>CO1: Learn the conceptual variations when advancing in calculus from one variable to multivariable discussion.</li> <li>CO: Understand the maximization and minimization of multivariable functions subject to the given constraints on variables.</li> <li>CO3: Learn about inter-relationship amongst the line integral, double, and triple integral formulations.</li> <li>CO4: Familiarize with Green's, Stokes' and Gauss divergence theorems, and learn applications.</li> </ul>

IV	Core	DSC-12:	CO1: Learn some numerical methods to find the zeroes
- '	0010	Numerical	of nonlinear functions of a single variable, up to a
		Analysis	certain given level of precision.
		•	CO2: Learn Gauss–Jacobi, Gauss–Seidel methods to
			solve system of linear equations.
			CO3: Get aware of using interpolation techniques, for
			example in finding values of a tabulated function at
			points which are not part of the table.
			CO4 Learn finding numerical solutions of difference
			equations which are obtained converting differential
			equations using techniques from calculus.
IV	DSE	DSE-2(ii):	CO1: Understand the methodology of solving SIR
		Mathematical	models for disease spread.
		Modeling	CO2: Learn significance of dieting model that provides
			important insights and guides to a biomedical issue that
			is of interest to the general public.
			CO3: Understand nonlinear systems and phenomena
			with stability analysis ranges from phase plane analysis
			to ecological and mechanical systems.
			CO4: Use Monte Carlo simulation technique to
			approximate area under a given curve, and volume
			under a given surface.
IV	SEC	SEC-1: IT Skills	CO1: Represent and interpret data in tabular and
		and Data Analysis	graphical forms
		- I	CO2: Understand and interpret the measures of central
			tendency and dispersion.
			CO3: Use IT tools such as spreadsheets to visualize and
			analyze data.
IV	SEC	SEC-1: IT Skills	CO1: Establish relationships between variables using
		and Data Analysis	correlation and regression analysis.
		- II	CO2: Visualize functions and differentiate between
			linear and nonlinear functions.
			CO3: Use IT tools such as spreadsheets to visualize
			and analyze data.

IV	SEC	SEC-1:	CO1: After studying this course, students will be able to
		Programming	interpret the basic representation of the data structures
		using Python	and sequential programming
			CO2: After studying this course, students will be able
			to gain knowledge of, and ability to use control
			framework terminologies.
			CO3: After studying this course, students will be able
			to work out using the core data structures as lists,
			dictionaries, tuples, and sets.
			CO4: After studying this course, students will be able
			to choose appropriate programming paradigms, interrupt
			and handle data using files to propose solutions through
			reusable modules
			CO5: After studying this course, students will be able
			to propose possible error-handling constructs for
			unanticipated states/inputs.
			CO6: After studying this course, students will be able
			to implements exemplary applications on real-world
			problems.
IV	VAC	VAC-1: Vedic	CO1: Overcome the fear of maths
		Mathematics-1	CO2: Improved critical thinking
			CO3: Familiarity with the mathematical underpinnings
			and techniques
			CO4: Ability to do basic maths faster and with ease.
			CO5: Appreciate the Mathematical advancements of
			Ancient India.
IV	VAC	VAC-1: Vedic	CO1: Think critically
		Mathematics-2	CO2: Find mathematical solution of algebraic
			expressions
			CO3: Solve system of linear equations and matrices
			Taster and with ease. $CO4$ . Appreciate the Methometical educements of
			A priorit India
			Ancient India.
V	Core	BMATH511:	CO1: Learn various natural and abstract formulations
		Metric Spaces	of distance on the sets of usual or unusual entities.
			Become aware one such formulations leading to metric
			spaces.
			CO2: Analyse how a theory advances from a
			particular frame to a general frame.
			CO3: Appreciate the mathematical understanding of
			various geometrical concepts, viz. balls or connected
			sets etc. in an abstract setting.
			CO4: Know about Banach fixed point theorem,
			whose har-reaching consequences have resulted into
			an independent branch of study in analysis, known
			as fixed point theory.
			roperties, namely connectedness and compactness of
			properties, namery connectedness and compactness of metric spaces
			mente spaces.

V	Core	BMATH512: Group Theory-II	<ul> <li>CO1: Learn about automorphisms for constructing new groups from the given group.</li> <li>CO2: Learn about the fact that external direct product applies to data security and electric circuits.</li> <li>CO3: Understand fundamental theorem of finite abelian groups.</li> <li>CO4: Be familiar with group actions and conjugacy.</li> <li>CO5: Understand Sylow theorems and their applications in checking non simplicity.</li> </ul>
V	DSE	DSE-1(i): Numerical Analysis	<ul> <li>CO1: Learn some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system of linear equations, up to a certain given level of precision.</li> <li>CO2: Know about methods to solve system of linear equations, such as Gauss–Jacobi, Gauss–Seidel and SOR methods.</li> <li>CO3: Interpolation techniques to compute the values for a tabulated function at points not in the table.</li> <li>CO4: Applications of numerical differentiation and integration to convert differential equations into difference equations for numerical solutions.</li> </ul>
V	DSE	DSE-1(iii): C++ Programming for Mathematics	<ul> <li>CO1: Understand and apply the programming concepts of C++ which is important to mathematical investigation and problem solving.</li> <li>CO2: Learn about structured data-types in C++ and learn about applications in factorization of an integer and understanding Cartesian geometry and Pythagorean triples.</li> <li>CO3: Use of containers and templates in various applications in algebra.</li> <li>CO4: Use mathematical libraries for computational objectives.</li> <li>CO5: Represent the outputs of programs visually in terms of well formatted text and plots</li> </ul>

V	DSE	DSE-2(i): Probability Theory and Statistics	<ul> <li>CO1: Learn about probability density and moment generating functions.</li> <li>CO2: Know about various univariate distributions such as Bernoulli, Binomial, Poisson, gamma and exponential distributions.</li> <li>CO3: Learn about distributions to study the joint behavior of two random variables.</li> <li>CO4: Measure the scale of association between two variables, and to establish a formulation helping to predict one variable in terms of the other, i.e., correlation and linear regression.</li> <li>CO5: Understand central limit theorem, which helps to understand the remarkable fact that: the empirical frequencies of so many natural populations, exhibit a bell-shaped curve, i.e., a normal distribution.</li> </ul>
V	DSE	DSE-2(ii): Discrete Mathematics	<ul> <li>CO1: Understand the notion of ordered sets and maps between ordered sets.</li> <li>CO2: Learn about lattices, modular and distributive lattices, sublattices and homomorphisms between lattices.</li> <li>CO3: Become familiar with Boolean algebra, Boolean homomorphism, Karnaugh diagrams, switching circuits and their applications.</li> <li>CO4: Learn about basics of graph theory, including Eulerian graphs, Hamiltonian graphs.</li> <li>CO5: Learn about the applications of graph theory in the study of shortest path algorithms.</li> </ul>
VI	Core	BMATH613: Complex Analysis	<ul> <li>CO1: Learn the significance of differentiability of complex functions leading to the understanding of Cauchy–Riemann equations.</li> <li>CO2: Learn some elementary functions and valuate the contour integrals.</li> <li>CO3: Understand the role of Cauchy–Goursat theorem and the Cauchy integral formula.</li> <li>CO4: Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues and apply Cauchy Residue theorem to evaluate integrals.</li> </ul>
VI	Core	BMATH614: Ring Theory and Linear Algebra-II	CO1: Appreciate the significance of unique factorization in rings and integral domains. CO2: Compute the characteristic polynomial, eigenvalues, eigenvectors, and eigenspaces, as well as the geometric and the algebraic multiplicities of an eigenvalue and apply the basic diagonalization result.

			CO3: Compute inner products and determine orthogonality on vector spaces, including Gram–Schmidt orthogonalization to obtain orthonormal basis. CO4: Find the adjoint, normal, unitary and orthogonal operators.
VI	DSE	DSE-3 (iii): Biomathematics	CO1: Learn the development, analysis and interpretation of bio mathematical models such as population growth, cell division, and predator-prey models. CO2: Learn about the mathematics behind heartbeat model and nerve impulse transmission model. CO3: Appreciate the theory of bifurcation and chaos. CO4: Learn to apply the basic concepts of probability to molecular evolution and genetics.
VI	DSE	DSE-4 (ii): Linear Programming and Applications	<ul> <li>CO1: Learn about the graphical solution of linear programming problem with two variables.</li> <li>CO2: Learn about the relation between basic feasible solutions and extreme points.</li> <li>CO3: Understand the theory of the simplex method used to solve linear programming problems.</li> <li>CO4: Learn about two-phase and big-M methods to deal with problems involving artificial variables.</li> <li>CO5: Learn about the relationships between the primal and dual problems.</li> <li>CO6: Solve transportation and assignment problems.</li> <li>CO7: Apply linear programming method to solve two-person zero-sum game problems.</li> </ul>

## **GENERIC ELECTIVE (GE) Courses for Honours Courses (For students other than B.Sc. (Hons.) Mathematics)**

Sem	Type of Course	Course Name	Course Outcomes
Ι	GE	GE-1: Fundamentals of Calculus	<ul> <li>CO1: Understand continuity and differentiability in terms of limits.</li> <li>CO2: Describe asymptotic behavior in terms of limits involving infinity.</li> <li>CO3: Understand the importance of mean value theorems and its applications.</li> <li>CO4: Learn about Maclaurin's series expansion of elementary functions.</li> <li>CO5: Use derivatives to explore the behavior of a given function, locating and classifying its extrema, and graphing the polynomial and rational functions.</li> </ul>
Ш	GE	GE-2: Introduction to Linear Algebra	CO1: Visualize the space <i>RRnn</i> in terms of vectors and the interrelation of vectors with matrices. CO2: Understand important uses of eigenvalues and eigenvectors in the diagonalization of matrices. CO3: Familiarize with concepts of bases,

			dimension and minimal spanning sets in vector spaces. CO4: Learn about linear transformation and its corresponding matrix.
Π	GE	GE-3: Differential Equations	<ul> <li>CO1: Solve the exact, linear, Bernoulli equations, find orthogonal trajectories and solve rate problems.</li> <li>CO2: Apply the method of undetermined coefficients and variation of parameters to solve linear differential equations.</li> <li>CO3: Solve Cauchy-Euler equations and System of linear differential equations.</li> <li>CO4: Formulate and solve various types of first and second order partial differential equations.</li> </ul>
IV	GE	GE-4: Linear Programming	<ul> <li>CO1: Learn about the simplex method used to find optimal solutions of linear optimization problems subject to certain constraints.</li> <li>CO2: Write the dual of a linear programming problem.</li> <li>CO3: Solve the transportation and assignment problems.</li> <li>CO4: Learn about solution of rectangular games using graphical method and dominance.</li> <li>CO5: Formulate game to a pair of associated prima-dual linear programming problems.</li> </ul>

## MATHEMATICS COURSES FOR B.A. (PROG.)

Sem	Туре	Course Name	Course Outcomes
	of		
	Course		
Ι	Core	DSC-1:	CO1: Understand the basic concepts of sets, relations,
	Major	Elements of	functions, and induction.
	-	Discrete	CO2: Understand mathematical logic and logical
		Mathematics	operations to various fields.
			CO3: Understand the notion of order and maps
			between partially ordered sets.
			CO4: Minimize a Boolean polynomial and apply
			Boolean algebra techniques to decode switching
			circuits.
Ι	Core	DSC-1	CO1: Understand continuity and differentiability in
	Minor	Topics in Calculus	terms of limits and graphs of certain functions.
		_	CO2: Describe asymptotic behaviour in terms of
			limits involving infinity.
			CO3: Use of derivatives to explore the behaviour of a
			given function locating and classify its extrema and
			graphing the function.
			CO4: Apply the concepts of asymptotes, and inflexion
			points in tracing of cartesian curves.
			CO5: Compute the reduction formulae of standard
			transcendental functions with applications

т	C		
11	Core	DSC-2:	CO1: Learn concepts in two-dimensional geometry.
	Major	Analytic Geometry	CO2: Identify and sketch conics namely, ellipse,
			parabola and hyperbola.
			CO3: Learn about three-dimensional objects such as
			straight lines and planes using vectors, spheres, cones
			and cylinders.
II	Core	DSC-2 (Discipline-	CO1: To introduce the concept of vectors in $\mathbb{R}^n$ .
	Minor	A-2)	CO2: Understand the nature of solution of system of
		Elementary Linear	linear equations.
		Algebra	CO3: To view the $m \times n$ matrices as a linear function
			from $R^n$ to $R^m$ and vice versa.
			CO4: To introduce the concepts of linear
			independence and dependence, rank and linear
			transformations has been explained through matrices.
			CO4. Get an overview of abstract algebra by
			learning about algebraic structures namely groups
			rings and vector spaces
			ings and voctor spaces.
Ш	Core	DSC-3.	CO1: Understand the nature of the roots of
	Major	Theory of	polynomial equations and their symmetries
	11100	Faustions	$CO^2$ : Solve cubic and quartic polynomial equations
		and	with special condition on roots and in general
		allu Symmetries	CO2: Find symmetric functions in terms of the
		Symmetries	cO3. Find symmetric relicions in terms of the
			elementary symmetric porynomials.
III	Core	DSC-3:	CO1: Solve the exact, linear, Bernoulli equations, find
	Minor	Differential	orthogonal trajectories and solve rate problems.
		Equations	CO2: Apply the method of undetermined coefficients
			and variation of parameters to solve linear differential
			equations.
			CO3: Solve Cauchy-Euler equations and System of
			linear differential equations.
			CO4: Formulate and solve various types of first and
			second order partial differential equations
IV	Core	DSC-4:	CO1: Good familiarity with all initial notions of graph
	Major	Introduction to	theory and related results and seeing them used for
	-	Graph Theory	some real-life problems.
			CO2: Learning notion of trees and their enormous
			usefulness in various problems.
			CO3: Learning various algorithms and their
			applicability.
			CO4: Studying planar graphs. Euler theorem
			associated to such graphs and some useful
			applications like coloring of graphs.

IV	Core	DSC-4 (Discipline	CO1: Appreciate ample types of groups present
	Minor	A-4):	around us which explains our surrounding better, and
		Abstract	classify them as abelian, cyclic and permutation
		Algebra	groups.
			CO2 Explain the significance of the notion of cosets,
			normal subgroups and homomorphisms.
			CO3: Understand the fundamental concepts of rings,
			subrings, fields, ideals, and factor rings.
V	DSE	$DSE-1 \qquad (1):$	CO1: Determine moments and distribution function
		Statistics	using moment generating functions.
			CO2: Learn about various discrete and continuous
			CO3: Know about correlation and regression for two
			variables weak law of large numbers and central
			limit theorem
			CO4. Test validity of hypothesis using Chi-square F
			and t-tests, respectively in sampling distributions.
V	GE	GE-1 General	CO1: Learn about the contributions of the ancient
		Mathematics-I	Indian mathematicians in the field of algebra.
			geometry, trigonometry, calculus and astronomy.
			CO? Know more about prime numbers. Fermat's last
			theorem I atin and magic squares
			CO3. Understand the various types of matrices
			cos. Onderstand the various types of matrices,
			operations of linear equations
	DOD		
VI	DSE	$DSE-2 \qquad (1):$	CO1: Find the consequences of finite precision and
		Numerical	the innerent limits of numerical methods.
		Methods	202: Appropriate numerical methods to solve
			CO3: Solve first order initial problems of ordinary
			differential equations numerically using Euler
			methods.
VI	GE	GE-2: General	CO1: Learn about the contributions of remarkable
		Mathematics – II	mathematicians in the field of algebra, analysis,
			number theory, calculus, analytic geometry,
			differential equations and mechanics.
			CO2: Understand basics of graph theory, functions
			and their graphs, perspective geometry and its uses in
			art, fractals and Fibonacci sequences with
			applications.
			CO3: Learn about types of symmetry and patterns by
			looking at monuments/buildings/ornamental art.
			CO4: Solve systems of linear equations using Gauss
			enmination and Gauss-Jordon methods, and rank of
			maurces.